Intestinal Crypt Lesions in an Outbreak of Albendazole Toxicity in Alpacas

Nicola Parry
Assistant Professor of Pathology
Tufts University
Cummings School of Veterinary Medicine
MORBIDITY & MORTALITY IN A GROUP OF ALPACA CRIAS

- **Alpaca Farm**
 - Herd of 60 alpacas
 - Central Massachusetts
 - Age range 1 month – 8 years
 - Group housed
 - No inter-group contact
HISTORY OF AFFECTED ANIMALS

• **Signalment**
 - Morbidity & mortality in 9 alpaca crias
 - Age: 1-7 months old
 - Sex:
 • 6 Females
 • 3 Males

• **Housing:**
 - 8 animals housed together in one group
 - 1 animal was housed with a separate group
 - No contact between groups
• **Background**

– These 9 animals were suspected to have cestodiasis

– Given anthelmintic treatment by the owner (only these 9 animals were treated)

– Each cria received 900mg of oral albendazole (Valbaza®) once daily for 4 consecutive days (33-100mg / kg / day)
PRESENTATION

• Two of the nine crias were found dead on the farm 1 and 3 days after receiving the last dose of albendazole
 – Presented for postmortem examination

• The other 7 animals presented to Tufts LAH within 3 days of receiving the last dose:
 – Dehydration
 – Weakness
 – Severe watery diarrhea

• Rule out infectious etiology
 – Other animals on farm at risk
INFECTIOUS DISEASES OF YOUNG CAMELIDS

• Although young camelids susceptible to similar local / generalized infections as other farm species
 – Neonatal camelids generally have:
 • Less umbilical / respiratory infections
 • More gastrointestinal infections
 – Diarrhea is an important cause of death in crias

• Gastrointestinal infections
 – Information is lacking on specific infectious agents & their pathogenicity
 – Considered susceptible to similar organisms as other farm animals
VIRUSES

• Viruses considered relatively uncommon in camelids
 – Some specific agents involved in GI disease include:

• Coronavirus
 – Little known about coronavirus in camelids
 – Increasing reports of coronavirus involvement in herd outbreaks of diarrhea
 • Beginning after a show or sale or associated with transport
 – Coronavirus is the organism isolated most consistently
 • Animals at the show affected first → herd mates develop disease 3-7d later
 • Usually self-limiting
 – Return to normal within a week

• Rotavirus
 – Has been identified as a potential pathogen
 – But little is known about rotavirus in camelids
 • Variable isolation rate in different studies
• Bovine Viral Diarrhea Virus

 – Rare in camelids
 • Reported in various camelid species (llamas, alpacas)
 • Research still needed to determine its full implications in camelids
 • Likely originating from BVDV-infected cattle

 • In alpacas:
 – Clear evidence for its existence in North American alpaca herds since 2001
 – At least 40 PI alpacas detected by early 2006
 – As in cattle, clinical signs not seen in all PI animals

 – Clinical signs
 • Respiratory distress
 • Diarrhea
 • Abortion
 • Congenital defects in crias
BACTERIA

• Bacteria isolated in some cases of GI disease:
 – Mostly opportunistic aerobic invaders:
 • Important contributing factors:
 – Failure of passive transfer
 – Concurrent gastrointestinal parasitic infections
 – Anaerobes not as common as in large animals:

• Clostridium perfringens
 – Cultured from some crias with diarrhea
 – Typing frequently revealed type C
 – Often in cases of enterotoxemia:
 • Concurrent infection with another pathogen
 – Enables clostridial multiplication

• Salmonella species
 – Occasional reports of septicemic salmonellosis
 – Not typically isolated from camels with diarrhea
 • Cases of enteric salmonellosis are rare in camels
PROTOZOANS

- More common cause of diarrhea in crias
 - Frequently isolated in fall / winter

- Cryptosporidium parvum and Giardia lamblia
 - Not uncommon
 - Previously considered more prevalent in older animals (2-6mo+)
 - In recent years determined important in neonates
 - Not typically isolated from healthy camelids
 - Immunocompromised
 - Cryptosporidium more common than Giardia
 - Both have zoonotic potential

- Coccidial organisms - important
 - Most common cause of diarrhea in crias
 - High intestinal loads cause diarrhea
 - Smaller loads clinically unimportant
 - Occurs in similar conditions as in ruminants
 - More commonly associated with:
 - Dirty, overcrowded buildings or pasture
 - Populations with young immunologically naïve animals
• Camelids host a specific range of coccidia:
 – Four Eimeria species infect alpacas:
 • E. macusaniensis
 • E. lamae
 • E. alpacae
 • E. punoensis

• Outbreaks of coccidiosis in alpacas
 – Usually due to E. macusaniensis & E. lamae (highly pathogenic)
 • E. lamae destroys intestinal mucosal epithelium
 • E. macusaniensis damages crypt epithelium / inhibits epithelial regeneration
 • Consequently expose intestine to secondary bacterial / viral infection
METAZOANS

- **Information scarce regarding camelid response to metazoan organisms**
 - Assumed to respond similar to ruminants
 - High intestinal loads necessary to cause diarrhea
 - Smaller loads clinically unimportant

- **Nematodes**
 - Nematodiasis occurs under similar conditions as coccidiosis (contaminated pastures etc)
 - Likely the most important are:
 - Nematodirus
 - Strongyloides
 - Trichuris
 - Capillaria
 - Ostertagia

- **Cestodes**
 - Minimal specific information documented
 - Two important species considered to be:
 - Monezia spp
 - Taenia spp
MOST SIGNIFICANT CLINICAL FINDINGS IN THE REMAINING 7 LIVE ANIMALS

HEMOGRAM:

– **Anemia:** Hct range 18-31% (Mean 16.9%)
 (Normal reference range 23-36%)

– **Leukopenia:** WBCC range 0.8 – 4.8 x 10^3 cells / µl (Mean 2.9 x 10^3 cells / µl)
 (Normal reference range: 6.1-17.7 x 10^3 cells / µl)

– **Neutropenia:** Neutrophil count range 32-3264 cells/µl (Mean 758 cells/µl)
 (Normal reference range: 3440-12730 cells/µl)

– 5 of these died despite treatment
 • Died within 3-4d post-presentation
 – Due to multiple organ failure as a complication of sepsis
POSTMORTEM EXAMINATION

• BY NOW WE HAVE 7 DECEASED ANIMALS

• Gross Postmortem Findings: Non-specific
 – Most consistent findings:
 • Reddened mucosa & serosa of the small intestine (5/7)
 • Reddened mucosa of the glandular stomach compartments (3/7)
 • Intestinal tract distended with green malodorous watery fluid +/- gas (6/7)

• Histopathologic Findings: Striking
 – In all animals, lesions were consistent in the:
 • Small intestine
 • Bone marrow
 – [Large intestinal lesions (6/7)]
 – [Glandular stomach lesions (4/7)]
Histopathology

- SMALL INTESTINE
 - Profound loss of villous architecture
 - Mucosal necrosis
 - Disrupted lamina propria
 - Crypt loss
 - Remaining crypts distended
• **Intestinal crypts**
 – Distended lumina
 – Sloughed necrotic epithelial cells
 – Regeneration of epithelial cells
 • Attenuated cells
 • Unevenly spaced
 • High N:C ratio

• **Similar lesions in the glands of the:**
 – Large intestine
 – Glandular stomach compartments
• BONE MARROW
 - Severe hypoplasia
 • Depletion of hematopoietic precursor cells
• **No cestodes** (or other metazoans)

• **Some animals did have:**
 – Cryptosporidial organisms (4/7)
 – Coccidial megaloschizonts (2/7)
ANCILLARY DIAGNOSTIC TESTING

• Intestinal contents from ileum and colon:
 – **NEGATIVE FOR VIRUSES:**
 • Rotavirus (FA) (EM)
 • Coronavirus (FA) (EM)
 • Bovine viral diarrhea virus (PCR)
 – **POSITIVE FOR AEROBIC BACTERIA**
 • Enterococcus spp. }
 • Escherichia coli } *Overgrowth*
 • Acinetobacter spp. }
 – **NEGATIVE FOR ANAEROBIC BACTERIA**
 • No evidence of salmonella or clostridial spp.
 – **NEGATIVE FOR METAZOAN PARASITES**

• **NO EVIDENCE FOR A PRIMARY INFECTIOUS ETIOLOGY**

www.oardc.ohio-state.edu
WHAT CAN WE DETERMINE FROM THE MICROSCOPIC FINDINGS?

• MAJOR FINDINGS:
 – EXTENSIVE INTESTINAL MUCOSAL AND CRYPT EPITHELIAL NECROSIS WITH REGENERATION
 – SEVERE BONE MARROW HYPOPLASIA

• TARGETING RAPIDLY PROLIFERATING TISSUES
INTESTINAL CRYPT NECROSIS AND BONE MARROW HYPOPLASIA

CAUSES

• Acute radiation injury
 – Causes mitotic arrest in cells
 – Most rapidly proliferating cells targeted
 • Most mitotically active
 – Bone marrow stem cells
 – Intestinal crypt epithelial cells

• Other causes of radiomimetic lesions:
 – Viral infections: Parvoviral infection in small animals
 • Destruction of early stem / precursor cells
 – Sepsis
 – Exposure to drugs / toxins
 • ? Albendazole intoxication
ALBENDAZOLE TOXICITY

• Albendazole intoxication now strongly suspected:
 – Only albendazole-treated animals were affected
 – No exposure to radiation
 – No overt evidence of a viral or other infectious etiology
 – Sepsis was considered a secondary event
ALBENDAZOLE

• A member of the benzimidazole anthelmintic class
 – The most recently introduced benzimidazole

• Exceptional broad-spectrum activity
 – One of the main groups used clinically
 – Drug of choice for most nematode infections
 – Orally administered
ALBENDAZOLE DOSING

• Oral dosing regime for effective treatment varies with species
 – Repeated administration (humans, pigs, dogs, cats)
 – Single dose (ruminants, horses)

• Suspension widely used & approved for cattle & sheep
 – Cattle: 10mg / kg (one-time dose)
 – Sheep: 7.5mg / kg (one-time dose)

• Llamas and alpacas:
 – Commonly used in camelids
 – Without reported adverse affects
 – No approved dose
 • Anecdotal dose range 10-15mg / kg (one time dose)
 • These crias received 33-100mg / kg / day for 4 days
MECHANISM OF ACTION OF ALBENDAZOLE

• Mode of action of anthelmintics
 – Most affect parasite neuromuscular system
 – Albendazole is different: exerts its action on the cytoskeleton

• Cytoskeleton “101”
 – A dynamic structural and functional framework in the cell
 • Composed of 3 types of filaments
 – Microtubules
 » Targeted by albendazole
 – Microfilaments
 – Intermediate
Microtubules

- **Important functions**
 - **Scaffold**
 - Maintain shape & framework of cells
 - **Cell transport**
 - Intracellular movement of organelles
 - **Cell division**
 - Form the mitotic spindle
 - Originate from centrosomes
 - Shorten & separate diploid chromosomes in mitosis

www.beyondbooks.com
Microtubules

• **Dynamic structures**
 – Continually assemble & disassemble

• **Composed of tubulin**
 – A dimer protein
 – Consists of two monomers
 • \(\alpha, \beta \) tubulin
 • Dimerize & polymerize during microtubule assembly \(\rightarrow \) ultimately disassemble

• **Albendazole**
 – **Inhibits microtubule formation**
 • Binds specifically to \(\beta \)-tubulin
 – Inhibits mitosis
Mechanism Of Action

- Albendazole preferentially affects parasite tubulin
 - Selectively damages microtubules in the nematode intestinal cell cytoplasm (not the host cells)
 - Inhibits tubulin polymerization → uncouples oxidative phosphorylation & blocks microtubule-dependent uptake of glucose by the nematode intestine:
 - Disrupts absorptive & secretory functions essential to parasite survival
 - Glucose uptake is reduced
 - Diminished energy supply immobilizes & kills the parasite
Albendazole Toxicity Study Data

- Data from animal studies involving repeated dosing of albendazole
 - Level causing no effect (NOEL) (rat, rabbit, dog)
 - 5-7mg/kg/day (2 year study)
 - Mouse, rat, and dog (30-40mg/kg/day for 4-90 days)
 - Reduced weight gain, anemia, mild leukopenia, hypercholesterolemia
 - Wistar rat (60-120 mg/kg/day for up to 90 days)
 - BM hypoplasia with pancytopenia

- These crias received 33-100mg / kg / day for 4 days
Albendazole Toxicity in Passerine Birds
(Zoological Society of San Diego)

- **PIGEONS AND DOVES**
 - Suspected toxicity problems with albendazole treatment
 - Retrospective study to identify clinical signs or toxic lesions associated with albendazole treatment
 - Evaluated hospital / PM records for 410 birds

 - Only included birds hospitalized for non-medical reasons
 - Quarantine / Preshipment examination / Routine parasite screening
 - Albendazole (n=36) treated group: (50–100 mg/kg PO q24h for 3–10 days)
 - Fenbendazole (n=84) treated group / Control group (n=290)

J Avian Med Surg 16(3) 2002
Albendazole Toxicity in Passerine Birds
(Zoological Society of San Diego)

- Findings in the albendazole-treated group (n=36)
 - **Marked leukopenia:** <1000 WBC / µl: 100% (P=0.013) (Control 0%)

 (Leukopenia in birds - identified as total WBCC <3000 / µl)

 - **Weight loss:** Mean 13.3% bodyweight: 100% (P=0.004) (Control animals gained weight)

 - **↑ Morbidity / mortality:** 66.7% survival (P<0.001) (Control 90%)

 - **Cause of death:** Peracute bacterial / fungal infection Consistent with immunosuppression

J Avian Med Surg 16(3) 2002
Albendazole Toxicity in Passerine Birds
(Zoological Society of San Diego)

• **NECROPSY FINDINGS**
 – **Histopathology**
 • Small intestinal crypt epithelial necrosis: 58.3% (P<0.001) (Control 0%)
 • Bone marrow hypoplasia: 83.3% (P<0.001) (Control 0%)

 – **Conclusions:**
 • Lesions consistent with albendazole intoxication
 • Passerine birds are susceptible to albendazole toxicity
Albendazole Toxicity in Humans

- Albendazole in humans
 - Enviable low toxicity record
 - Most commonly used as a short term treatment
 - Passive reporting of side effects initially minimal
 - Rare, idiosyncratic reactions reported
 - Treatment of echinococcosis / cysticercosis
 - Long term treatment (weeks to months)
 - 7-15mg/kg/day
 - Increasingly common since 1980’s
 - Toxicity data slowly emerging
 - Repeated dosing produces:
 - Bone marrow hypoplasia
 - Severe neutropenia
 - Aplastic anemia
 - Thrombocytopenia
 - Pancytopenia

Autopsy bone marrow specimen
(Magnification x70)

Bone marrow hypoplasia:
68 year old male treated for
3 weeks with albendazole @
400mg BID for a pulmonary
echinococcal cyst

Am J Trop Med Hyg 72(3) 2005
CASE SERIES: OUTCOME

• 2/9 original animals remained alive
 – Crias # 6 and # 5
 • Hospitalized for 17 and 24 days respectively
 – Given supportive care:
 » Broad-spectrum antimicrobial treatment
 » Intravenous fluid therapy

• Progressively neutropenic over 3 days
 – **Cria # 5**: 3264 → 8 cells / µl
 – **Cria # 6**: 216 → 0 cells / µl

(Normal reference range 3440-12730 cells/µl)
• Crias #5 & #6 were treated with filgrastim (Neupogen®)
 – 5µg/kg S/C q24h

• Filgrastim
 – Recombinant human granulocyte colony-stimulating factor (rG-CSF)
 – Hematopoietic growth factor
 • Controls proliferation of committed progenitor cells
 – Regulates production and function of neutrophils
 » Stimulates their release from BM storage pools
 » Reduces their maturation times
Neutrophil counts

Within 7 days, neutrophil counts normalized
Case Series: Outcome

• **Cria #6:**

 – **Persistent pyrexia**
 • Failed to resolve despite broad-spectrum antimicrobial/antifungal agents
 • Negative blood-cultures
 • No abnormalities on thoracic radiographs or abdominal ultrasound

 – **Developed severe thrombocytopenia 10d post-admission**
 • 5000 platelets / µl (Normal reference range 100-400 x10³ cells / µl)
 • Treated with a whole blood transfusion

 – **Diagnosed with erythrocyte parasitization by *Mycoplasma haemolama***
 • Diagnosed 21 days post-admission
 • Given oxytetracycline (10mg/kg SC, q48h)
 – Pyrexia resolved within 36 hours
Case Series: Outcome

- Both crias #5 and #6 were discharged
- Did well on the farm for a period of time
 - Gained weight
- Cria #6 died suddenly 3 months after discharge:
 - No direct association made with earlier albendazole toxicity episode
- Cria #5 is still thriving on the farm
- Final veterinary bill >$30,000
CONCLUSION

• **Cause of morbidity and mortality in these crias was attributed to albendazole toxicity:**
 – Only the albendazole-treated group were affected
 – Lesions identical to cases reported in other species

• **Repeated daily dosing inevitably contributed to the toxicity**
 – 33-100mg / kg / day for 4 days

• **Albendazole may have a narrow therapeutic index in alpacas**
 – ? Possible increased sensitivity of alpacas to albendazole
 • Similar to that seen in passerine birds

• **Recommend a one time maximum dose**
 – 10-15mg / kg
Thank you!